Tetrahedron Letters 41 (2000) 3829-3831

Lewis acid-catalyzed regiospecific opening of vinyl epoxides by alcohols

Guillaume Prestat,^a Christophe Baylon,^a Marie-Pierre Heck^{a,*} and Charles Mioskowski ^{a,b,*}

^aCEA-CE Saclay, Service des Molécules Marquées, Bât 547, Département de Biologie Cellulaire et Moléculaire, F-91191 Gif sur Yvette cedex, France

^bLaboratoire de Synthèse Bio-organique associé au CNRS, Faculté de Pharmacie, Université Louis Pasteur, 74 route du Rhin BP24, F-67401 Illkirch, France

Received 17 February 2000; accepted 18 March 2000

Abstract

A Lewis acid-catalyzed, regiospecific opening of vinyl epoxides to β -hydroxy allyl-ethers was performed using equimolar quantities of both alcohols and oxiranes. BF₃·Et₂O proved to be the most efficient catalyst for various substituted alcohols. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: vinyl epoxide; alcohol; ring-opening; Lewis acid.

In the course of our investigations of the synthesis of natural and non-natural *Annonaceous* acetogenins, we were interested in the nucleophilic ring-opening of vinyl epoxides with 1 molar equivalent of alcohol (Scheme 1).

Scheme 1

Despite the rich literature on the chemistry of epoxide opening,¹ to the best of our knowledge there are few reports concerning ring-opening of vinyl epoxides by alcohols.^{2–4} Nicolaou et al. demonstrated the CSA (camphorsulfonic acid)-catalyzed intramolecular ring-opening of vinyl epoxides.² Posner and Rogers reported the alumina-promoted opening of 1,3-cyclopentadiene monoxide with a large excess of allylic alcohol.³ A palladium(II)-catalyzed ring-opening of vinyl epoxide with cyclic stannyl diether has also been described by Trost and Teneglia.⁴ These last two examples are the only reported intermolecular reactions to date, and are limited to cyclic compounds³ or require elaborate reagents.⁴ Furthermore, general methods for the opening of non-vinylic epoxides with oxygen nucleophiles were

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(00)00496-2

^{*} Corresponding author. E-mail: heck@dsvidf.cea.fr (M.-P. Heck), mioskow@aspirine.u-strasbg.fr (C. Mioskowski)

usually performed with alcohol used in large excess or as solvent.⁵ These features limit the synthetic utility of this reaction.

Here we present our results of a Lewis acid-mediated regiospecific opening of vinyl epoxides using equal amounts of alcohol and oxirane, leading to β -hydroxy allyl-ethers.

3,4-Epoxy-tridec-1-ene **1**, chosen as a model reagent, was prepared in a 60:40 *cis:trans* mixture from decylaldehyde and allyl arsonium ylide according to a known procedure.⁶ Oxirane **1** was allowed to react with 1 equivalent of various types of alcohols (**2a–2e**) as shown in Scheme 2. Reactions were carried out at room temperature in methylene chloride (1 M) in the presence of different catalysts.

The ring-opening of $\bf 1$ was first attempted with 3,4-dimethoxybenzyl alcohol $\bf 2a$. The reaction was very slow when using Nicolaou's intramolecular conditions (CSA 10% mol) and afforded $\bf 3a$ in only a moderate yield (35% after 15 days). Similar results were obtained employing other organic acids such as PPTS (pyridinium-p-toluenesulfonate) or pTsOH. Either basic conditions (sodium alcoholate of $\bf 2a$) or LiClO₄ catalysis led to complete recovery of starting materials.

We then turned our attention to the use of Lewis acids. Catalytic amounts of MgBr₂, Et₂AlCl₂, Me₂AlCl₂, Ti(OiPr)₄ and TiCl₂(OiPr)₂ gave a rapid and complete degradation of the vinyl epoxide. Other Lewis acid catalysts proved successful (Table 1). Tin, titanium and zinc chlorides afforded the opened product $\bf 3a$ in moderate yields (respectively, 15, 18 and 35%). Trimethylsilyl, tin, copper and iminium triflates generated the desired product in 55–73% yields. The use of BF₃·Et₂O gave the best result: $\bf 3a$ was isolated in a 76% yield using only 1% mol of catalyst after 30 min of stirring. BF₃·Et₂O was selected (1% mol, 30 min) for the study of alcohols $\bf 2b$ – $\bf 2e$. Yields were good with activated ($\bf 2b$, 75%), linear ($\bf 2c$, 73%) and hindered ($\bf 2d$, 70%) alcohols. Nucleophilic ring-opening even occurred in 52% yield with the deactivated alcohol $\bf 2e$.

The reaction yield was not significantly affected by changing the solvent (C_6H_6 , E_12O) and/or by varying the temperature ($-78^{\circ}C$ to reflux). In contrast, lowering the concentration from 1 to 0.1 M resulted in a lowering in yield (76 to 30% for 3a). In all the reported examples the ring-opening reaction appeared to be regiospecific. Only nucleophilic attack at the C-3 position of the vinyl epoxide was observed (Scheme 2). It should be noted that β -hydroxy allyl-ethers were isolated as a 60:40 diastereomeric mixture similar to the *cis:trans* ratio of starting epoxide 1. The only by-products resulted from the degradation of vinyl epoxide.

In summary, we have presented the first preparative synthesis of β -hydroxy allyl-ethers by condensation of alcohols on a vinyl epoxide using equimolar quantities of both partners. The reaction was catalyzed by BF₃·Et₂O (1% mol) in methylene chloride (1 M) at room temperature. The mild conditions

ROH Catalyst Yielda ROH Catalyst Yielda (mol%) (mol%) (%) (%) 2a SnCl₄ (10) 15 Me₂N=CCl₂.OTf (2.5) 73 2a 2a TiCl₄ (10) 18 2a BF₃.Et₂O (1) 76 2a ZnCl₂ (50) 35 2b BF₃.Et₂O (1) 75 2a TMSOTf(10) $BF_3.Et_2O(1)$ 55 2c 73

68

70

Table 1
Catalyzed ring-opening reaction of vinyl epoxide 1 (1 equiv.) with alcohols 2a–e (1 equiv.)

 $Sn(OTf)_2$ (10)

Cu(OTf)₂ (10)

2a

2a

and easy work-up of this opening reaction allow its application to sensitive substrates as reported in the following paper,⁸ where this methodology is used as a key step in the enantiospecific synthesis of (–)-muricatacin.

2d

2e

 $BF_3.Et_2O(1)$

 $BF_3.Et_2O(1)$

70

52

Experimental procedure: A 10% solution of $BF_3 \cdot Et_2O$ (12 μL , 0.01 mmol) in CH_2Cl_2 was added dropwise to a mixture of **1** (1 mmol) and **2a–2e** (1 mmol) in CH_2Cl_2 (2 mL). The reaction was stirred for 30 min at room temperature and then concentrated under reduced pressure. The residue was purified by SiO_2 chromatography to yield β -hydroxy allyl-ether.

Acknowledgements

Financial support was provided in part by the Commissariat à l'Energie Atomique (fellowships for G.P. and C.B.).

References

- 1. (a) Mitsunobu, O. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, L.; Pattenden, G., Eds.; Pergamon Press: Oxford, 1990; Vol. 6, pp. 88–93. (b) Birkinshaw, T. N. In *Comprehensive Organic Functional Group Transformations*; Katrisky, A. R.; Meth-Cohn, O.; Rees, C. W.; Roberts, S. M., Eds.; Pergamon Press: Oxford, 1990; Vol. 1, pp. 204–220.
- (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K.; Somers, P. K. J. Chem. Soc., Chem. Commun. 1985, 1359–1362.
 (b) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330–5334.
 (c) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 6676–6682.
- 3. Posner, G. H.; Rogers, D. Z. J. Am. Chem. Soc. 1977, 99, 8214–8218.
- 4. Trost, B. M.; Tenaglia, A. Tetrahedron Lett. 1988, 29, 2931–2934.
- 5. (a) Otera, J.; Yoshinaga, Y.; Hirakawa, K. *Tetrahedron Lett.* **1985**, 26, 3219–3222. (b) Iranpoor, N.; Mohammadpour Baltork, I. *Tetrahedron Lett.* **1990**, 31, 735–738.
- 6. Ousset, J. B.; Mioskowski, C.; Solladié, G. Tetrahedron Lett. 1983, 24, 4419–4422.
- 7. Degradation of vinyl epoxide in the presence of a catalytic quantity of Lewis acid also occurred in the absence of alcohol.
- 8. Baylon, C.; Prestat, G.; Heck, M.-P.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 3833–3835.

^a products isolated by column chromatography